/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.Market; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm reproducing data type bugs in the RegisterIndicator API. Related to GH 4205. /// public class RegisterIndicatorRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private List _indicators; private Symbol _symbol; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2020, 01, 05); SetEndDate(2020, 01, 10); var SP500 = QuantConnect.Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME); _symbol = FutureChainProvider.GetFutureContractList(SP500, StartDate.AddDays(1)).First(); AddFutureContract(_symbol); // this collection will hold all indicators and at the end of the algorithm we will assert that all of them are ready _indicators = new List(); // Test the different APIs for IndicatorBase works correctly. // Should be able to determine the correct consolidator and not throw an exception var indicator = new CustomIndicator(); RegisterIndicator(_symbol, indicator, Resolution.Minute); _indicators.Add(indicator); // specifying a selector and using resolution var indicator2 = new CustomIndicator(); RegisterIndicator(_symbol, indicator2, Resolution.Minute, data => (QuoteBar) data); _indicators.Add(indicator2); // specifying a selector and using timeSpan var indicator3 = new CustomIndicator(); RegisterIndicator(_symbol, indicator3, TimeSpan.FromMinutes(1), data => (QuoteBar)data); _indicators.Add(indicator3); // directly sending in the desired consolidator var indicator4 = new SimpleMovingAverage(10); var consolidator = ResolveConsolidator(_symbol, Resolution.Minute, typeof(QuoteBar)); RegisterIndicator(_symbol, indicator4, consolidator); _indicators.Add(indicator4); // directly sending in the desired consolidator and specifying a selector var indicator5 = new SimpleMovingAverage(10); var consolidator2 = ResolveConsolidator(_symbol, Resolution.Minute, typeof(QuoteBar)); RegisterIndicator(_symbol, indicator5, consolidator2, data => { var quoteBar = data as QuoteBar; return quoteBar.High - quoteBar.Low; }); _indicators.Add(indicator5); // Now make sure default data type TradeBar works correctly and does not throw an exception // Specifying resolution and selector var movingAverage = new SimpleMovingAverage(10); RegisterIndicator(_symbol, movingAverage, Resolution.Minute, data => data.Value); _indicators.Add(movingAverage); // Specifying resolution var movingAverage2 = new SimpleMovingAverage(10); RegisterIndicator(_symbol, movingAverage2, Resolution.Minute); _indicators.Add(movingAverage2); // Specifying TimeSpan var movingAverage3 = new SimpleMovingAverage(10); RegisterIndicator(_symbol, movingAverage3, TimeSpan.FromMinutes(1)); _indicators.Add(movingAverage3); // Specifying TimeSpan and selector var movingAverage4 = new SimpleMovingAverage(10); RegisterIndicator(_symbol, movingAverage4, TimeSpan.FromMinutes(1), data => data.Value); _indicators.Add(movingAverage4); // Test custom data is able to register correctly and indicators updated var smaCustomData = new SimpleMovingAverage(1); var symbol = AddData("BTC", Resolution.Minute).Symbol; RegisterIndicator(symbol, smaCustomData, TimeSpan.FromMinutes(1), data => data.Value); _indicators.Add(smaCustomData); var smaCustomData2 = new SimpleMovingAverage(1); RegisterIndicator(symbol, smaCustomData2, Resolution.Minute); _indicators.Add(smaCustomData2); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings(_symbol, 0.5); } } public override void OnEndOfAlgorithm() { if (_indicators.Any(indicator => !indicator.IsReady)) { throw new RegressionTestException("All indicators should be ready"); } Log($"Total of {_indicators.Count} are ready"); } private class CustomIndicator : IndicatorBase { private bool _isReady; public override bool IsReady => _isReady; public CustomIndicator() : base("Jose") { } protected override decimal ComputeNextValue(QuoteBar input) { _isReady = true; return input.Close; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 6803; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 1; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "22662.692%"}, {"Drawdown", "1.700%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "109332.4"}, {"Net Profit", "9.332%"}, {"Sharpe Ratio", "157.927"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "95.713%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "103.354"}, {"Beta", "1.96"}, {"Annual Standard Deviation", "0.663"}, {"Annual Variance", "0.439"}, {"Information Ratio", "159.787"}, {"Tracking Error", "0.651"}, {"Treynor Ratio", "53.381"}, {"Total Fees", "$15.05"}, {"Estimated Strategy Capacity", "$1900000000.00"}, {"Lowest Capacity Asset", "ES XCZJLC9NOB29"}, {"Portfolio Turnover", "171.57%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d814db6d5a9c97ee6de477ea06cd3834"} }; } }